(k, l)-kernels in quasi-transitive digraphs*

Ilan A. Goldfeder
Instituto de Matemáticas
Universidad Nacional Autónoma de México
Ciudad Universitaria
04510, México, D.F.
México
ilan.goldfeder@gmail.com

October 30, 2009

Abstract

Let \(D = (V, A) \) be a directed graph (digraph) without loops nor multiple arcs. A set of vertices \(S \) of a digraph \(D \) is a \((k, l)\)-kernel of \(D \) if and only if for any two vertices \(u, v \) in \(S \), \(d(u, v) \geq k \) and for any vertex \(u \) in \(V \setminus S \) there exists \(v \) in \(S \) such that \(d(u, v) \leq l \).

A digraph \(D \) is called quasi-transitive if and only if for any distinct vertices \(u, v, w \) of \(D \) such that \(u \rightarrow v \rightarrow w \), then \(u \) and \(w \) are adjacent vertices in \(D \).

In this paper, we characterize the \((2, 1)\)-kernels (usually knowns as kernels simply) in quasi-transitive digraphs. We prove also that every quasi-transitive digraph possesses a \((3, 2)\)-kernel and we give how to get it.

2000 Mathematic Subject Classification: Primary: 05C20; Secondary: 05C69.
Keywords: Quasi-transitive digraphs; Kernel; Quasi-kernel; (k, l)-kernel; k-independence.

1 Preliminaries

For general concepts we refer the reader to [2]. In this paper, \(D = (V(D), A(D)) \) denotes a directed graph (digraph) without loops nor multiple arcs. For each vertex \(u \) in \(D \), \(N^+(u) \) (respectively \(N^-(u) \)) denotes the ex-neighbourhood (resp. in-neighbourhood) of \(u \). \(d^+(u) = |N^+(u)| \) (resp. \(d^-(u) = |N^-(u)| \)). We denote an arc \((u, v)\) in \(A(D) \) by \(u \rightarrow v \). Two distinct vertices \(u \) and \(v \) are adjacent if and only if \(u \rightarrow v \) or \(v \rightarrow u \). If \(S \) is a set of vertices of \(D \), we denote by \(D[S] \) the induced subdigraph by \(S \) in \(D \). All our paths are directed. A \((u, v)\)-path in a digraph \(D \) is a path which initial vertex is \(u \) and which terminal vertex is \(v \). The distance between vertices \(u \) and \(v \) in

*Trabajo presentado por Hortensia Galeana-Sánchez
D is the length of the minimum (u, v)-path in D. If u is a vertex of D and S is a set of vertices of D, the distance between u and S is the minimum of the distances between u and each vertex in S, analogously for $d(S, u)$. A digraph D is strong if and only if for any vertices u and v in D there exists a (u, v)-path in D. The components of D are the maximal strong subdigraphs of D. A component D' of D is terminal if and only if there is no vertex u not in D' such that $d(D', u) \leq 1$.

A digraph D is quasi-transitive if and only if for any distinct three vertices u, v and w in D such that $u \rightarrow v \rightarrow w$, then u and w are adjacent vertices. The quasi-transitive digraphs were introduced by A. Ghouilà-Houri in [9]. They are a well-known class of digraphs that has been widely studied in several papers from different perspectives, as in [1, 8, 11, 10, 15].

A set of vertices S is a kernel of D if and only if S is independent, i.e. there is no pair of vertices adjacent in S, and absorbent, i.e. any vertex u in $V(D) \setminus S$ has an ex-neighbour in S. The notion of kernel was introduced by J. von Neumann and O. Morgernstern in [13] and has been widely studied in many papers such [3, 4, 6, 7, 9, 14].

As a generalization of the notion of kernel, in [12] M. Kwaśnik defined the (k, l)-kernel as a set S of vertices of D such that:

(i) S is k-independent, i.e., for any two distinct vertices u and v in S, $d(u, v) \leq k$, and

(ii) S is l-absorbent in D, i.e., for any vertex u in $V(D) \setminus S$, there exists v in S such that $d(u, v) \leq l$.

A kernel is a $(2, 1)$-kernel. $(2, 2)$-kernels are known as quasi-kernels.

2 (k, l)-kernels in quasi-transitive digraphs

In [1], J. Bang-Jensen and J. Huang characterize the quasi-transitive digraphs. They also prove the followings:

Proposition 2.1 (Bang-Jensen and Huang [1]). Let D be a quasi-transitive digraph. Suppose that $P = (x_1, x_2, \ldots, x_k)$ is a minimal (x_1, x_k)-path. Then the subdigraph induced by $V(P)$ is a semicomplete digraph and $x_j \rightarrow x_i$ for every $2 \leq i + 1 < j \leq k$, unless $k = 4$, in which case the arc between x_1 and x_k may be absent.

Corollary 2.2 (Bang-Jensen and Huang [1]). If a quasi-transitive digraph D has an (x, y)-path but x does not dominate y, then either $y \rightarrow x$, or there exist vertices $u, v \in V(D) \setminus \{x, y\}$ such that $x \rightarrow u \rightarrow v \rightarrow y$ and $y \rightarrow u \rightarrow v \rightarrow x$.

Note that if there is directed (x, y)-path in a quasi-transitive digraphs, then x and y are in the same component of D.

Corollary 2.3. Let D be a strong quasi-transitive digraph and S an independent set of vertices of D. Then S is 3-independent but k-independent for $k \geq 4$.

Proof. Let \(S \) be as in the hypothesis of the proposition. Take distinct vertices \(u \) and \(v \) in \(S \) and let \(P \) be a directed \((u, v)\)-path. Since there is no \(u \to v \), it follows from Corollary 2.2 that \(v \to u \) or there exist \(x, y \in V(D) \setminus \{u, v\} \) such that \(u \to x \to y \to v \) and \(v \to x \to y \to u \). But \(S \) is independent, therefore \(d_D(u, v) = d_D(v, u) = 3 \).

Therefore, it follows from the previous remark and corollary that in a quasi-transitive digraph there exist only two classes of independent set of vertices, the first one is \(3\)-independent but \(k\)-independent for \(k = 4, 5, \ldots \) and the other one is \(k\)-independent for all \(k = 1, 2, \ldots \).

Theorem 2.4 (Chvátal and Lovász [5]). Every digraph \(D \) has a quasi-kernel.

Corollary 2.5. Every quasi-transitive digraph \(D \) has a \((3, 2)\)-kernel.

Proof. It follows from Theorem 2.4 and Corollary 2.3.

Moreover, in [11] S. Heard and J. Huang proved the following theorem:

Theorem 2.6 (Heard and Huang [11]). Every quasi-transitive digraph with no sink contains a pair of disjoint quasi-kernels.

Where a vertex \(v \) is a sink of \(D \) if and only if \(d^+(v) = 0 \).

Corollary 2.7. Every quasi-transitive digraph with no sink contains a pair of disjoint \((3, 2)\)-kernels.

The question remains whether a quasi-transitive digraphs has a kernel or not.

Theorem 2.8. Let \(D \) be a strong quasi-transitive digraph. \(D \) has a kernel if and only if \(D \) has a vertex \(v \) such that \(d^-(v) = |V(D)| \).

Proof. For the necessary condition, \(v \) is a kernel of \(D \).

We prove the sufficient condition by contrapositive. For any vertex \(v \) in \(D \), assume \(d^-(v) < |V(D)| \). Take \(S \) any independent set of vertices of \(D \). We will prove that \(S \) is not absorbent. If \(|S| = 1\), then \(S \) is not a kernel by our assumption. Thus, suposse \(|S| \geq 2\) and take \(x, y \in S \).

Because Corollary 2.2, there exist vertices \(u \) and \(v \) in \(D \) such that \(x \to u \to v \to wy \) and \(y \to u \to v \to x \). Thus \(d(u, x) = d(u, y) = 2 \). If there exists \(w \in S \) such that \(u \to w \), then we have \(x \to u \) and \(u \to w \). Since \(D \) is a quasi-transitive digraph, it follows that \(x \) and \(w \) are adjacent, a contradiction because we assume \(S \) as a kernel of \(D \).

The following theorem provides a way to construct a \((3, 2)\)-kernel in a quasi-transitive digraph.

Theorem 2.9. Let \(D \) be a strong quasi-transitive digraph. If \(S \subseteq N^+(x) \setminus N^-(x) \) is a \((3, 2)\)-kernel of \(D[N^+(x) \setminus N^-(x)] \) for any vertex \(x \) in \(D \), then \(S \) is a \((3, 2)\)-kernel of \(D \).

Proof. By the Corollary 2.3, \(S \) is \(3\)-independent in \(D \). We will prove that \(S \) is \(2\)-absorbent in \(D \). Take any \(y \in V(D) \). If \(d(y, x) \leq 1 \) or \(d(x, y) \leq 1 \), then \(d(y, S) \leq 2 \) by the definition of \(S \). Otherwise, there exist \(u, v \) in \(V \setminus \{x, y\} \) such that \(x \to u \to v \) and \(y \to u \to v \). There are no \(u \to x \), \(x \to v \), \(u \to y \), \(y \to v \) because \(D \) is quasi-transitive and \(\{x, y\} \) is an independent set of vertices. Therefore \(u \in N^+(x) \setminus N^-(x) \) and \(d(u, S) \leq 2 \) in \(D[N^+(x) \setminus N^-(x)] \). Thus there exists \(w \in N^+(x) \setminus N^-(x) \) such that \(u \to w \) and \(d(w, S) \leq 1 \). Since there are \(y \to u \) and \(u \to w \), it follows from the quasi-transitivity that \(y \) and \(w \) are adjacent vertices in \(D \). If \(w \to y \), then \(x \) and \(y \) are adjacent because \(x \to w \), a contradiction. Therefore, \(y \to w \) and \(d(y, S) \leq 2 \).
Proposition 2.10. Let D be a quasi-transitive digraph and D_1, \ldots, D_p its terminal components. For any vertex v in $V(D) \setminus \bigcup_{i=1}^{p} V(D_i)$, $d(v, \bigcup_{i=1}^{p} V(D_i)) \leq 1$.

Proof. It follows from Proposition 2.1.

Corollary 2.11. Let D be a quasi-transitive digraph and D_1, \ldots, D_p its terminal components. Let $S_i \subseteq V(D_i)$ be a (k, l)-kernel of D_i for each $i = 1, 2, \ldots, p$. Then $\bigcup_{i=1}^{p} S_i$ is a (k, l)-kernel of D.

References

(2007):

(2008):

Galeana-Sánchez, H. and Olsen, M. Kernels by monochromatic paths in digraphs with covering number 2, 13 p.